DESIGN AND CONSTRUCTION OF **TEMPORARY SHELTERS IN RUKUM** WEST USING BAMBOO, MUD AND PLASTIC SHEET

Presented by

Prof. Dr. Jiba Raj Pokharel, Designer and Researcher Dr. Tabassum Siddiqui- Design and Research Assistant Nirajan Shrestha- Architect Dasarath Khati- Construction supervisor

POST DISASTER SCENE

• EMERGENCY SHELTERS

POST DISASTER SCENE

• TRANSITION SHELTERS

POST DISASTER SCENE

- PERMANENT HOUSING
- CONSTRUCTION IN
 BARPAK

DESIGN AND CONSTRUCTION-2015 EARTHQUAKE: AREA 95 sq ft(Source: Rita et al, 2015)

TEMPORARY SHELTERS

- COMMENTS
 - USE OF FOREIGN
 MATERIALS
 - COLD IN WINTER
 - HOT IN SUMMER
 - COMPARATIVELY COSTLY
 - COMPARATIVELY LONG
 TIME CONSUMED IN
 CONSTRUCTION

TEMPERATURE CALCULATION SOURCE: Rita et al, 2015

Table 1

The size of investigated shelte	rs, the number of peopl	le living and the	materials used.
---------------------------------	-------------------------	-------------------	-----------------

Shelter	Depth [m]	Width [m]	Height [m]	No. of people	Density	Wall [m] Roof [m]	Roof [m]		
code					[Persons/m ²]		Internal	Middle	External
S1	5.0	3.5	2.1	4	0.23	Zinc sheet*	Thick clothes : 5×10^{-3} and CPF : 6×10^{-3}	Zinc sheet*	Straw : 6×10^{-2}
S3	3.7	2.5	2.0	4	0.43	Zinc sheet*	CPF: 6×10^{-3}	Zinc sheet*	Tarpaulin : 2×10^{-3}
S4	6.5	5.5	2.8	4	0.13	Zinc sheet*	Thick clothes : 5×10^{-3}	Zinc sheet*	None
S5	7.6	6.5	2.8	4	0.1	Zinc sheet*	Thick clothes : 5×10^{-3}	Zinc sheet*	None
S6	3.5	2.6	2.1	2	0.22	Bamboo : 8×10^{-3} , Mud plaster : 5×10^{-3}	CPF: 6×10^{-3}	Zinc sheet*	None

CPF : cellular polyethylene foam, Zinc sheet* [m] : 0.26×10^{-3} .

TEMPERATURE CALCULATION SOURCE: Rita et al, 2015

TEMPERATURE CALCULATION SOURCE: Rita et al, 2015

1

ription of investigated shelters in terms of heat transmission coefficient, total heat loss coefficient and heat capacity estimated.

1	Wall area [m²]	Roof area [m²]	Floor area [m²]	Total surface area (wall +roof) [m²]	U _i for wall [W](m²-K]]	ų for reaf [W/(m ² ·K)]	Total heat loss coefficient [W/K]	Total heat loss coefficient per floor area [W/(m ² -K]]	Total heat loss coefficient per surface area [W](m ² /K)]	C <i>pV</i> [k]K]	CpV per floor area, [k](m²-K)]
	357	175	17.5	53.2	5.6	12	2209	12.6	42	1918	109.6
	116	5.1*	93	26.7	5.6	26	104.2	113	3.9	526	566
	672	363	35.8	103.5	5.6	38	514.3	14.4	5.0	4770	133.2
	79.0	49.7	49.4	128.6	5.6	38	630.1	12.8	49	5051	102.2
	25.6	9.1	91	347	44	28	1381	15.2	4.0	1284	MU

shelter code, CpV: specific heat capacity, *: Roof area is calculated for whole dome-shaped shelter.

DESIGN AND CONSTRUCTION using bamboo, mud and plastic sheet

DESIGN AND CONSTRUCTION

DESIGN AND CONSTRUCTION

GROUND FLOOR PLAN (452.38 SQ.FT.)

DESIGN AND CONSTRUCTION

TEMPORARY SHELTERS

 USE OF BAMBOO AND , MUD IN FOUNDATION, SUPERSTRUCTURE AND ROOF

TEMPORARY SHELTERS

USE OF SILPAULINE
 PLASTIC SHEET OF 120
 GAUGE FOR ROOF
 COVERING

DOORS AND WINDOWS

• Made of bamboo

TEMPORARY SHELTERS

- MAINTAINENCE OF 3 INCH GAP IN WALLS
- GOOD INSULATION
- WARM IN WINTER
- COOL IN SUMMER
- THE TEMPERATURE SHOULD NOT GO BELOW 11(Degree Celsius)

CALCULATION OF THERMAL CONDUCTIVITY

Sn	Description	Conductivity/ W m ⁻¹ K ⁻¹	Thickness/m	Resistance/m ² K W ⁻¹
1	15mm Mud plastered bamboo lath	4.4	.015	.003
2	75 mm Air Gap	0.18	.075	2.4
3	15mm Mud plastered bamboo lath	4.4	.015	.003
	Total			2.406
	Conductivity			1/2.406 = 0.41

The wall conductivity of shelter 6 was 4.4. Its wall is one tenth. Again it has a similar conductivity in roof. So, the temperature is likely to be more than 11degree celsius.

TEMPORARY SHELTERS

- MAINTAINENCE OF 3 INCH GAP IN ROOFS
- GOOD INSULATION
- WARM IN WINTER
- COOL IN SUMMER

TEMPORARY SHELTERS

- USE OF LOCAL MANPOWER AND ON HAND TRAINING
- USE OF LOCAL MATERIAL AND CONSTRUCTION TECHNIQUE LIKE BAMBOO AND MUD

- PROVISION OF WATER
 SUPPLY
- PROVISION OF
 ELECTRICAL LIGHTING

TEMPORARAY SHELTERS

- FIRE PROOF CONSTRUCTION DUE TO THE USE OF MUD PLASTER
- MOUSE REPELLENT CONSTRUCTION THROUGH THE USE OF POINTED BAMBOOS IN THE GAP
- EARTHQUAKE RESISTANT DUE TO LIGHT AND FLEXIBLE STRUCTURE

TIME TAKEN FOR CONSTRUCTION

- 8 WEEKS
- ONE SHELTER WAS COMPLETED IN 2WEEKS
- SEVERAL MISTAKES CAME INTO BEING BECAUSE OF FIRST CONSTRUCTION
- BUT IT CAN BE COMPLETED WITHIN ONE MONTH, OR ONE WEEK FOR ONE SHELTER IN FUTURE

COST INCURRED FOR CONSTRUCTION

- Material Cost
 - Bamboos-172 nos
 - 21,500 at 125 per no
 - Mud for plastering and filling
 - 6 tractors -12,000
 - Plastic Sheet Rs 12,000
- Material Cost-11,375 per unit
- Labor Cost-29,400
 - 1 skilled, 4 unskilled for 7 days
- Miscellaneous-5000
- Total- 45,400
- The pilot project cost was high due to supervision, travel and other costs

LIKELY IMPROVEEMENT FOR PERMANENT HOUSING

- It can be made permanent with few minor changes
 - For example putting ply wood instead of plastic sheet in doors and windows

DURABILITY

- This technology is used in Madhesh
- These houses are for permanent living
- I lived in such a house
- My own experience is its durability for at least 25 years and more
- But it should not be exposed in the open
- It should be plastered by mud plaster

DURABILITY

- The local technology is to dip it in a pool of water for a week
- It was not done because of its temporary nature

DURABILITY

 It can also be treated by the use of borax which is not very costly

HANDS ON TRAINING

- TRAINING HAS BEEN
 PROVIDED TO LOCAL
 PERSONS
- THEY CAN NOW BUILD ON THEIR OWN

HANDS ON TRAINING

- PLASTERING
- PAINTING

SUPPORTED BY

 NEPAL ACADEMY OF SCIENCE AND TECHNOLOGY

SUPPORTED BY

 LUMBINI INTERNATIONAL ACADEMY OF SCIENCE AND TECHNOLOGY

SUPPORTED BY

KANTIPUR
 INTERNATIONAL
 COLLEGE

THANKS

Any questions?